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Abstract. A variety of stochastic models have been used to describe time series of precipitation or rainfall. Since many of

these stochastic models are simplistic, it is desirable to develop connections between the stochastic models and the underlying

physics of rain. Here, convergence results are presented for such a connection between two stochastic models: (i) a stochastic

moisture process as a physics-based description of atmospheric moisture evolution, and (ii) a point process for rainfall time

series as spike trains. The moisture process has dynamics that switch after the moisture hits a threshold, which represents the5

onset of rainfall and thereby gives rise to an associated rainfall process. This rainfall process is characterized by its random

holding times for dry and wet periods. On average, the holding times for the wet periods are much shorter than the dry, and,

in the limit of short wet periods, the rainfall process converges to a point process that is a spike train. Also, in the limit,

the underlying moisture process becomes a threshold model with a teleporting boundary condition. To establish these limits

and connections, formal asymptotic convergence is shown using the Fokker-Planck equation, which provides some intuitive10

understanding. Also, rigorous convergence is proved in mean-square with respect to continuous functions, of the moisture

process, and convergence in mean-square with respect to generalized functions, of the rain process.

1 Introduction

Time series of precipitation or rainfall display highly irregular behavior, as illustrated in Fig. 1, and many valuable models

have been based on stochastic processes. A variety of different stochastic models have been used, including renewal processes,15

Markov chains, Poisson processes, and point processes (Green, 1964; Katz, 1977; Richardson, 1981; Smith and Karr, 1983;

Foufoula-Georgiou and Lettenmaier, 1987; Rodriguez-Iturbe et al., 1988; Cowpertwait et al., 1996; Wilks and Wilby, 1999).

The many applications of these models include weather forecasting, stochastic weather generation, climate impact assessment,

climate model downscaling, hydrological modeling, ecological modeling, and agricultural modeling.

Commonly, stochastic models for rainfall are empirical—i.e., based mainly on fitting the model behavior to match obser-20

vational rainfall data—rather than based mainly on the underlying physical laws. Nevertheless, it is desirable to relate the

stochastic models to physical principles, to the extent possible. Here, we investigate such a relation.

In particular, the goal of the present paper is to prove a connection between (i) a point-process description of rainfall time

series and (ii) a physics-based model for the stochastic evolution of moisture. At first glance, the point-process model appears

to be somewhat disconnected from basic physical laws based on mass, momentum, and energy. However, the point-process25
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Figure 1. Sample precipitation time series from observations at (a) Manus Island and (b) Nauru Island reproduced from Fig 3. of Abbott

et al. (2016) with permission from the authors. The latter two panels are stochastic model simulations of (c) the rain rate process σε(t) with

finite rain rate r and (d) σ(t) as the point process.

model can be seen to arise from the underlying evolution of moisture (which is the mass, or mass mixing ratio, of water vapor

in the air) (Abbott et al., 2016). Here, this connection is demonstrated via formal asymptotics on the Fokker–Planck equation,

and proved rigorously in the mean-square sense.

To be more specific, a point process model of rainfall can be viewed as a spike train, as in Fig. 1d, where a rainfall event is

an instantaneous spike. The point process could be defined and characterized by the random waiting time, τd, of the duration30

of the “dry spell” in between rain events. As an empirical model of rainfall, one could estimate the probability density function

(pdf) of τd based on observational data (Peters et al., 2010; Deluca and Corral, 2014). For such an empirical approach, one

could use data of rainfall time series alone, without appealing to any physical laws or any other type of observational data

(humidity, wind speed, etc.). Similarly, beyond point processes, one could use a renewal process as a model of rainfall time
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series, as in Fig. 1c, by introducing a finite (and possibly random) time τ r for the duration of the rain event. Again, as in the35

case of a point process, one could use a renewal process as an empirical model, based on data of rainfall time series alone,

without appealing to any physical laws or any other type of observational data. However, it would be desirable to show that the

point process and renewal process models can also arise from more physically based underpinnings.

Here, as mentioned above, a point process model of precipitation will be linked to the evolution of moisture, to provide a

more physically based foundation of the point process model. The moisture model used here is a continuous-time stochastic40

process for q(t), which represents the amount of water vapor in a column of the atmosphere at time t (Stechmann and Neelin,

2011, 2014; Hottovy and Stechmann, 2015b; Abbott et al., 2016; Neelin et al., 2017). The q(t) process is governed by the

stochastic differential equations (SDEs)

dq(t) =





m dt+D0 dWt for σ(t) = 0

−r dt+D1 dWt for σ(t) = 1
, q(0) = 0, σ(0) = 0, (1)

where m and r are the moistening and rain rates respectively, and D0 and D1 are the fluctuations of moisture during the45

respective states. The quantity σ(t) is an indicator function for rain, and the dynamics of σ(t) switch from 0 to 1 when q(t)

reaches a fixed threshold b > 0. For instance, supposing that (q(0),σ(0)) = (0,0), then σ(t) = 0 until the time t1 = inf{t≥ 0 :

q(t) = b}, at which time the value of σ switches to σ(t) = 1. Then σ(t) switches back to zero at a later time when q(t) reaches

a lower threshold, q(t) = 0. Figure 2a,b shows a realization of the processes q(t) and σ(t). The process σ(t) can be viewed

as a renewal process, with random durations τd and τ r of dry spells and rain events, respectively, although σ(t) is not just a50

stand-alone renewal process, since it arises from the underlying dynamics of moisture q.

The threshold behavior of (1) is a fundamental feature of the moisture–rainfall relationship that is seen in nature (Peters and

Neelin, 2006; Deluca et al., 2015), and it is a basic aspect of many more complex moisture models and convective parame-

terizations as well (Lin and Neelin, 2000; Frierson et al., 2004; Khouider and Majda, 2005; Khouider et al., 2010; Hottovy

and Stechmann, 2015a; Stechmann and Hottovy, 2016; Ahmed and Neelin, 2019; Mueller and Stechmann, 2020; Huang et al.,55

2022). Sometimes the threshold is also called a trigger (Hernandez-Duenas et al., 2019). The threshold can be viewed as the

onset of moist convective instability, and the moisture q is used as the physical quantity that governs the onset of the instability.

In this way, (1) is a physically based model of atmospheric moisture, and, from it, one can obtain a rainfall time series as

secondary or auxiliary quantity.

The main result of the paper is to define and show convergence of the threshold model in (1) as r→∞. For example, on the60

level of renewal processes, τ r→ 0 and thus σ(t) converges to a process that is zero everywhere and has spikes at infinity after

random durations of length τd. However, σ(t) is right continuous and has left hand limits, where as the spike train is not. Thus

the mode of convergence is not clear. For q(t) the limit is also unclear, but will be redefined in a way to show convergence with

respect to the topology on continuous functions with the uniform metric. In this study, the limiting processes are defined (in

Section 2) and convergence is shown both heuristically (for the Fokker-Planck equation) and rigorously.65

Some of the novel aspects of this work are as follows. The limit jump process q(t) has an associated Fokker-Planck equation

that is derived using a matched asymptotic method. The resulting Fokker-Planck equation has a peculiar boundary flux condi-
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tion which defines a “teleporting” boundary condition of q(t). The processes are decoupled into evaporating and precipitating

processes. Only after this decoupling can convergence of the evaporation processes be shown rigorously with respect to the

uniform metric on the space of continuous functions. Also, the rain process σ(t) is shown to converge rigorously with respect70

to the generalized function space. This proof shows convergence of a renewal process to a delta process. Furthermore, the proof

shows what kinds of bounds are needed for the rain event times τ r in order for integrated convergence to hold.

The convergence results shown here have the potential to impact various other fields. Many fields of study use similar

renewal processes to model different types of phenomena (Cox, 1962). The connections to rain models were made above. In

addition, there has been work in queuing theory to approximate point processes with renewal processes (e.g. Whitt (1982);75

Bhat (1994)), and using threshold triggers in financial models (Lejay and Pigato, 2019). Thresholds arise in many applications

of piecewise dynamical systems where the threshold marks a change in the dynamics, as in Fillipov dynamics and hybrid

switching diffusions (Filippov, 2013; Simpson and Kuske, 2014). The limiting process is similar to a stochastic resetting

process studied in Evans and Majumdar (2011); Evans et al. (2020). Here the process stochastically resets to q = 0 after a

random hitting time τd which depends on the process. Another interesting connection is with neuron stochastic integrate and80

fire models (see Sacerdote and Giraudo (2013) for a review). The moisture process with a finite rain rate is similar to a Wiener

Process model of a single Neuron with refractoriness. A similar model was studied in Albano et al. (2008) where the refractory

time was constant. Here, the refractory time is random and coincides with the rain duration time τ r. Thus the work here

is applicable to understanding the differences in using a model without refractoriness versus a model with a short, possible

random, refractory time.85

The structure of the paper is as follows. The processes for moisture and rain are defined in Section 2. The modes of conver-

gence are discussed in Section 3. The heuristic convergence with the Fokker-Planck equation is shown in Section 3.1. Rigorous

convergence of the moistening process Eε to E is shown with respect to L2 in Section 3.2 and the rain process σε is shown to

converge to the sum of delta distributions σ with respect to generalized functions in Section 3.3. The results are summarized in

Section 4.90

2 Model Description

In this section the moisture and precipitation processes are defined. First the underlying moisture process of the renewal rain

process is defined. The processes are defined with a small parameter ε with the limit as ε→ 0 in mind.

The moisture process qε(t) ∈ R is defined as the solution to the stochastic differential equation (SDE),

dqε(t) =





m dt+D0 dWt for σε(t) = 0

− rε dt+D1 dWt for σε(t) = 1
, qε(0) = 0, σε(0) = 0, (2)95

where m and r/ε are the moistening and rain rates, and 0<D0 ≤D1 are the fluctuations of moisture during the respective

states. The rain process, σε(t) ∈ {0, r/ε} is defined as follows: since σε(0) = 0, let T ε1 ≡ inf{t > 0|qε(t) = b}. Then σε(t) = 0

for t ∈ [0,T ε1 ). Next let T ε2 ≡ inf{t > T ε1 |qε(t) = 0}, and σε(t) = r/ε for t ∈ [T ε1 ,T ε2 ). This process repeats up to an arbitrary
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final time T . Define the time intervals τd,εi and τ r,εi as

τd,ε1 = T ε1 − 0, (3a)100

τ r,ε1 = T ε2 −T ε1 , (3b)

τd,ε2 = T ε3 −T ε2 , (3c)

τ r,ε2 = T ε4 −T ε3 , (3d)

and so on. These are the duration times for dry and rain events.

The associated processes, as ε→ 0, are defined as q(t) and σ(t) for the moisture and rain processes. (It would perhaps be105

appropriate to denote the limiting processes as q0(t) and σ0(t), to indicate that they arise from qε(t) and σε(t) in the limit

ε→ 0. However, we will drop the superscript 0 from q0(t) and σ0(t) to ease notation.) The moisture process is the solution to

the SDE,

dq(t) =m dt+D0 dWt, q < b, q(0) = 0, (4)

with the unusual boundary condition as follows: Let the usual stopping time be T1 = inf{t > 0|q(t) = b}. Then at time t > T1110

the process q(t) jumps or “teleports” to q = 0. Thus

lim
t→(T1)−

q(t) = b, lim
t→(T1)+

q(t) = 0, q(T1) = b. (5)

Then the process starts over using the dynamics of (4) until T2 = inf{t > T1|q(t) = b}, and the process repeats. The time

intervals

τdi = Ti+1−Ti, (6)115

are the dry event durations. The rain event duration, on the other hand, is not defined for this limiting process, since rain events

are instantaneous in the intense-rain-rate limit of ε→ 0.

Example time series of the processes are shown in Figure 2. The processes with finite rain rate r/ε for ε > 0 are shown in

panels (a) and (b). Panel (a) is the moisture process qε(t) defined in equation (2). The rain rate process is shown in panel (b) and

takes the value r/ε when qε(t) reaches level b for the first time (panel (a) in black) and resets to zero when qε(t) reaches zero120

(panel (a) in gray). This process repeats. The limiting processes are shown in panels (c) and (d). Panel (c) shows the limiting

moisture process q(t) defined in equation (4) and panel (d) shows the rain process defined in equation (7). The moisture process

is a Brownian motion with positive drift until reaching level b. When q(t) = b, the process σ(t) takes an infinite value and the

moisture process is reset at zero.

From the definition of τdi above, the rain point process σ(t) is defined as125

σ(t) = b

N (T )∑

i=1

δ(t−Ti), (7)
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Figure 2. Realizations are plotted of the processes (a) qε(t), (b) σε(t) for rain rate r/ε defined in equation (2) with ε > 0 and, on the other

hand, the limiting (ε→ 0) processes (c) q(t) and (d) σ(t) defined in equation (4) and (7) respectively.

where N (T ) is the random variable of the number of times the process q(t) reaches b in time T . The quantity b arises because

the moisture process qε loses moisture at a rate of r/ε per time, on average. The moisture process q(t) loses all the moisture

built up (which is an amount b) instantaneously.

Note that qε(t) has continuous paths while q(t) has jump discontinuities. Thus any mode of convergence between qε and q130

with an associated metric (e.g. uniform or Skorohod) will fail (Kelley, 2017). Nevertheless, there is another way to define both

qε and q in which convergence with respect to L2 with the uniform metric on the space of continuous functions (C[0,T ]) can

be shown. To do so, qε(t) is decomposed into an evaporating process, Eε(t), and precipitating process P ε(t). These processes
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are defined as

dEεt =





m dt+D0dWt for σεt = 0

0 for σεt = 1
, and dP εt =





0 for σεt = 0

− rε dt+D0dWt for σεt = 1
. (8)135

Thus the moisture process qε(t) is written as

qε(t) = Eε(t) +P ε(t).

In the limit, the jumps will be captured in the P ε process. In the following section it will be shown (see Section 3.2) that

Eε→ E, where E(t) is defined as the solution to the SDE

dE(t) =m dt+D0 dWt, E(0) = 0. (9)

Furthermore, the spike times of the σ process, which was defined above in (7), could now also be defined in terms of the E(t)

process as Ti = inf{t > 0|E(t) = ib, i ∈ N}, i.e. the first passage time of Brownian motion with drift to ib.140

3 Convergence to a Point Process

In this section convergence is shown both heuristically (e.g. Section 3.1) and rigorously (e.g. Sections 3.2 and 3.3).

Note that the simplest ideas of convergence break down when considering path-wise convergence of qε to q and σε to σ.

This is because qε is a continuous process for all ε > 0, whereas q is a process with jumps; and σε is left continuous with right-

hand limits, whereas σ no longer is left continuous. Thus, there is no topology with associated metric d such that qε→ q with145

respect to d (Kelley, 2017). However, one could try to show that qε converges in a notion weaker than the Skorohod topology;

see Kurtz (1991) for these conditions. Such convergence would happen in a topology which does not have an associated metric

(see Jakubowski et al. (1997)). This approach is not pursued here as it is technical and does not give any insight to the model

or approximation.

Instead, we pursue convergence in the following senses. The next three subsections prove convergence of the various pro-150

cesses introduced in Section 2. In Section 3.1 the Fokker-Planck equation for qε is shown to converge (formally) to a Fokker-

Planck equation for q. This derivation gives rise to an interesting partial differential equation (PDE) with unusual “teleporting”

boundary conditions. In Section 3.2 convergence in paths is shown for Eε to E with respect to the uniform metric for con-

tinuous functions on [0,T ]. In Section 3.3 convergence is shown for σε to σ with respect to generalized functions. This norm

is necessary because σ is a sum of Dirac delta functions. In addition, this convergence is natural to consider for applications155

where the errors are analyzed between using σε and a point process (σ) in, for example, a climate model or as a model for

observational time series.

3.1 Fokker-Planck Equation

In this section, we derive the Fokker-Planck equation of (4) by taking the formal asymptotic limit, as ε→ 0, of the Fokker-

Planck equation of (2). This mode of convergence provides some intuition for the behavior in the ε→ 0 limit.160
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The Fokker-Planck equation for (2) (see Hottovy and Stechmann (2015b)) is composed of two densities. These densities are

denoted ρ0 and ρ1 for the dry state (σε = 0) and the rain state (σε = 1), respectively. These densities evolve according to the

following Fokker-Planck equations:

∂tρ0 =−m∂qρ0 +
D2

0

2
∂2
qρ0− δ(q)f1

∣∣∣∣
q=0

, −∞< q < b, t≥ 0, (10)

∂tρ1 =
r

ε
∂qρ1 +

D2
1

2
∂2
qρ1 + δ(q− b)f0

∣∣∣∣
q=b

, 0< q <∞, t≥ 0, (11)165

where the fluxes fi are defined as

f0(q, t) =mρ0(q, t)− D2
0

2
∂qρ0(q, t) (12a)

f1(q, t) =−r
ε
ρ1(q, t)− D2

1

2
∂qρ1(q, t), (12b)

and with the following conditions,

ρ0(b, t) = ρ1(0, t) = 0, (13)170
∞∫

−∞

ρ0(q, t) + ρ1(q, t) dq = 1, t≥ 0, (14)

which are absorbing boundary conditions and the normalization condition, respectively. One interesting property of these

Fokker–Planck equations is the appearance of Dirac-delta source terms, which represent transitions between the dry state and

rain state. For instance, in (10), a Dirac delta source term arises at q = 0, and it represents the transition from the rain state

(σε = 1) to the dry state (σε = 0) when the (raining) moisture process reaches the lower threshold at q = 0. The magnitude of175

this Dirac delta source term is −f1|q=0, which is the outward flux of ρ1 at the lower threshold, q = 0, as defined from (11) and

(12b).

The proposed limit as ε→ 0 for the Fokker-Planck equation is

∂tρ0 =−m∂qρ0 +
D2

0

2
∂2
qρ0 + f0|q=bδ(q), −∞< q < b, t≥ 0, (15)

ρ1 =0. (16)180

with the following conditions,

ρ0(b, t) = 0 (17)
b∫

−∞

ρ0(q, t) dq = 1. (18)

To derive the limiting (ε→ 0) Fokker–Planck equation, the analysis follows the procedure of matched asymptotic expansions

(see, e.g., Bender and Orszag (2013)). Consider two regions [0, ε] and [ε,∞). Let ρ1,B be the density in the first region, which185
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is a boundary layer region. For this equation, define the rescaled variable q̃ = 1
ε q. This yields the equation

∂tρ1,B =
r

ε2
∂q̃ρ1,B +

D2
1

2ε2
∂2
q̃ρ1,B (19)

Let ρ1,B have the asymptotic expansion of the form,

ρ1,B = ρ0
1,B + ερ1

1,B +O(ε2).

Substituting this expansion into equation (19) yields, at order ε−2 and order ε−1, respectively,

O(ε−2) : 0 = r∂q̃ρ
0
1,B +

D2
1

2
∂2
qρ

0
1,B , (20a)

O(ε−1) : 0 = r∂q̃ρ
1
1,B +

D2
1

2
∂2
qρ

1
1,B . (20b)190

By solving the order ε−2 equation in (20a) and applying the absorbing boundary condition at q̃ = 0, one arrives at

ρ0
1,B = C1(t)

(
1− exp

[
− 2r
D2

1

q̃

])
. (21)

The order ε−1 equation in (20b) has essentially the same solution as above, and, after applying the absorbing boundary condi-

tion, one finds

ρ1
1,B = C2(t)

(
1− exp

[
− 2r
D2

1

q̃

])
. (22)195

Now consider the interval away from the boundary [O(ε),∞). Let ρ1,A be the density in this region. The equation in this

region is

∂tρ1,A =
r

ε
∂qρ1,A +

D2
1

2
∂2
qρ1,A + δ(q− b)f0(b, t). (23)

Let ρ1,A have the asymptotic expansion

ρ1,A = ρ0
1,A + ερ1

1,A +O(ε2).

Note that the δ term acts on f0 which is a function of ρ0. The asymptotic expansion is for ρ1 only in the [O(ε),∞) region, and

thus the density ρ0 is an order one term. Substituting the expansion into equation (23) gives the following equations, separated200

into their orders of ε,

O(ε−1) : 0 = r∂qρ
0
1,A (24a)

O(1) : ∂tρ0
1,A = r∂qρ

1
1,A +

D2
1

2
∂2
qρ

0
1,A + δ(q− b)f0(b, t). (24b)

The order ε−1 equation in (24a) has the solution

ρ0
1,A = C3(t). (25)205
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Note that ρ1,A is a density and thus ρ0
1,A must be integrable on [O(ε),∞). Thus C3(t) = 0 and

ρ0
1,A = 0. (26)

From the order one equation in (24b), by substituting in ρ0
1,A = 0, we arrive at

ρ1
1,A =





C4(t) for O(ε)≤ q < b

C4(t)− 1
rf0(b, t), for q ≥ b

(27)

Note that the constant of integration in each interval of b must be the same. Otherwise, the magnitude of the δ function in (24b)210

would not be correct. The density ρ1
1,A must be integrable, which implies that

C4(t) =
1
r
f0(b, t). (28)

It is assumed that the matching between the A and B solutions must occur at an intermediate location or overlapping region.

That is, for values of q =O(ε1/2),

ρ0
1,B(O(ε1/2), t) = ρ0

1,A(O(ε1/2), t)

and

ρ1
1,B(O(ε1/2), t) = ρ1

1,A(O(ε1/2), t).

The first equation implies that C1(t) = 0 and ρ0
1,B = ρ0

1,A = 0. In the limit as ε→ 0 the second equation yields215

C2(t) =
1
r
f0(b, t). (29)

Thus the densities are

ρ0
1 = 0 (30)

and

ρ1
1 =





1
rf0(b, t)

(
1− exp

[
− 2r
D2

1

q
ε

])
0≤ q ≤O(ε)

1
rf0(b, t) O(ε)≤ q ≤ b
0 b < q

. (31)220

Note the flux of ρ1 at q = 0 is, to leading order, in terms of ρ1
1,

f1(0, t) = rρ1
1(0, t) + ε

D2
1

2
∂qρ

1
1(0, t). (32)

Using the asymptotic formula for ρ1
1 yields

f1(0, t) =
D2

1

2
ε

{
1
r
f0(b, t)

(
2r
D2

1ε

)}
= f0(b, t). (33)
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Consequently, while the rain-state density itself is small (i.e., ρ0
1 = 0), the flux f1 of the rain state is O(1), and its value f1(0, t)225

at the threshold q = 0 represents an O(1) flux from the rain state to the dry state.

Thus the Fokker-Planck type equation for q(t) is

∂tρ0 =−m∂qρ0 +
D2

0

2
∂2
qρ0 + f0|q=bδ(q), −∞< q < b,t≥ 0, (34)

ρ1 =0. (35)

with the following conditions,230

ρ0(b) = 0, (36)
b∫

−∞

ρ0(q, t) dq = 1. (37)

Notice an interesting property of this Fokker–Planck equation: the absorbing boundary condition at q = b in (36) is actually

coupled to a Dirac-delta source at q = 0 in the Fokker–Planck equation in (34). In this coupling, the flux f0|q=b of absorption at

the boundary is also equal to the magnitude of the source f0|q=bδ(q) which inserts mass at q = 0. Therefore, when the process235

is absorbed at q = b, it is re-inserted at q = 0, and in this way it represents a teleporting boundary condition.

3.2 Pathwise Convergence

Rigorous mathematical convergence is now considered. For this section and next, a useful lemma is first stated and proved. In

essence, the lemma states that, for a finite time interval [0,T ], it is (exponentially) unlikely that a large number of rain events

will occur.240

Lemma 38. LetN ε(T ) be the number of rain events for the qε process defined in (4). The probability that the number of events

is N decays exponentially as N tends to infinity, i.e. for 0< s <min{rb/εD2
2,mb/D

2
1}

P (N ε(T ) =N)≤ exp

{
sT − Nmb

D2
1

(√
1 +

2D2
1s

m2
− 1

)}
.

Proof. Note that the process N ε(T ) is a renewal process. It is defined by the interarrival times,

Sn = τd,εn + τ r,εn , n≥ 1, (39)

where τd,εi (τ r,εi ) is the duration for the ith dry (rain) event of the σε process. Note that Sn is used instead of Tn−Tn−2 to align

with common notation of renewal processes. The distributions of τdi and τd,εi are the same and are independent of ε, while τ r,εi
depends on ε. For the lemma, the quantity of interest is the probability of having N rain events in time T , which is defined as245

P (N ε(T ) =N) = P (S1 +S2 + · · ·SN ≤ T, S1 +S2 + · · ·+SN +SN+1 > T ) . (40)
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The probability on the right hand side is estimated crudely by only considering one of the two events. Note that S1,S2,S3, ...,Sn

are IID random variables with E[S1] = E[τd,ε + τ r,ε], and σ2 = Var(S1)<∞, so that

P (N ε(T ) =N)≤ P (S1 +S2 + · · ·+SN ≤ T ) . (41)

The above probability is estimated by using a variant of the Chernoff bound (Hoeffding, 1994). That is,250

P (S1 +S2 + · · ·SN ≤ T )≤ exp(sT )
n∏

i=0

E[e−sSi ], (42)

for any s > 0, whereE[e−sSi ] =MSi(s) is the moment generating function for the random variable Si. The moment generating

function can be factored due to independence of τ r,εi and τd,εi :

MSi(s) =Mτr,εi
(s)Mτd,εi

(s). (43)

These moment generating functions are computed explicitly from the distributions found in Hottovy and Stechmann (2015b).255

They are,

Mτr,εi
=

∞∫

0

e−stρr(t) dt= exp

{
−rb
εD2

2

(√
1 +

2D2
2sε

2

r2
− 1

)}
, (44)

Mτd,εi
=

∞∫

0

e−stρd(t) dt= exp

{
−mb
D2

1

(√
1 +

2D2
1s

m2
− 1

)}
, (45)

which are defined for s <min{rb/εD2
2,mb/D

2
1}. Chernoff’s bound then yields

P (N ε(T ) =N)≤ P (S1 +S2 + · · ·Sn ≤ T ) (46)260

≤ exp(sT )
N∏

i=0

E[e−sSi ] (47)

= exp

{
sT − Nrb

εD2
2

(√
1 +

2D2
2ε

2s

r2
− 1

)
− Nmb

D2
1

(√
1 +

2D2
1s

m2
− 1

)}
(48)

≤ exp

{
sT − Nmb

D2
1

(√
1 +

2D2
1s

m2
− 1

)}
. (49)

With this lemma, pathwise convergence is now considered. Recall from the discussion at the beginning of the section that265

we consider convergence not for qε but for the evaporating process Eε. Convergence from Eε to E is shown in L2(Ω) with

respect to the uniform metric on the space of continuous functions C[0,T ].

Theorem 50. Let qεt be defined as

qεt = Eεt +P εt
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where Eεt ,P
ε
t are solutions to the SDEs in (8). Furthermore let Et be defined as the solution to (9). Then

lim
ε→0

E

[(
sup

0≤t≤T
|Eεt −Et|

)2
]

= 0. (51)

Proof. To begin, note that the SDEs for Eε and E (see (8)) only differ when σε(t) = 1. Thus, the solutions to the SDEs give270

the formula

|Eε(t)−E(t)|=

∣∣∣∣∣∣∣

N ε(T )∑

i=1

T ε2i−1+τ
r,ε
i∫

T ε2i−1

m dt+

T ε2i−1+τ
r,ε
i∫

T ε2i−1

D0 dWt

∣∣∣∣∣∣∣
, (52)

where N ε(T ) is the number of rain events for T <∞ and ε > 0 fixed. Note that interval [T ε2i−1,T ε2i] has been written as

[T ε2i−1,T ε2i−1 + τ r,εi ] to emphasize the rain event duration τ r,εi . To proceed, the number of rain events is conditioned to be N .

Note that m> 0 and the stochastic integral is a martingale and Doob’s maximal inequality yields,275

E

[(
sup

0≤t≤T
|Eε(t)−E(t)|

)2
]

≤
∞∑

N=1

4E




∣∣∣∣∣∣∣

N∑

i=1

T ε2i−1+τ
r,ε
i∫

T ε2i−1

m dt+

T ε2i−1+τ
r,ε
i∫

T ε2i−1

D0 dWt

∣∣∣∣∣∣∣

2
∣∣∣∣∣∣∣∣
N ε(T ) =N


P (N ε(T ) =N).

(53)

By Lemma 38, the sum above converges due to the fast decay of P (N ε(T ) =N) as N →∞. Applying the Cauchy-Schwarz

inequality to the sum and the Itô isometry to the stochastic integral yields

E

[(
sup

0≤t≤T
|Eε(t)−E(t)|

)2
]
≤
∞∑

N=1

CNE
[
m2|τ r,ε|2 +D2

0|τ r,ε|
∣∣ N ε(T ) =N

]
P (N ε(T ) =N), (54)

where τ r,ε denotes the general event duration, which has the same distribution as all of the IID τ r,εi . This sum converges due280

to the fast decay of P (N ε(T ) =N) as shown in Eq.(49).

To finish the proof the following moments of τ r,εi are used. The integrals can be computed exactly using the densities for

τ r,εi found in Hottovy and Stechmann (2015b). They are

E[τ r,εi ] =
bε

r
, E[|τ r,εi |2] =

bD2ε3

r3
+
b2ε2

r2
. (55)

Thus the limit is285

lim
ε→0

E

[(
sup

0≤t≤T
|Eε(t)−E(t)|

)2
]
≤ lim
ε→0

∞∑

N=1

CNE
[
m2|τ r,ε|2 +D2

0|τ r,ε|
∣∣ N ε(T ) =N

]
P (N ε(T ) =N), (56)

≤
∞∑

N=1

lim
ε→0

CN

[
m2

(
bD2ε3

r3
+
b2ε2

r2

)
+D2

0

(
bε

r

)]
P (N ε(T ) =N) (57)

= 0, (58)

where Tonelli’s theorem allows the limit as ε→ 0 to exchange with the infinite sum. This completes the proof.
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3.3 Distributional Convergence290

In this subsection L2(Ω) convergence of σε to σ is shown with respect to a generalized function norm. This norm is considered

here due to the nature of the delta function. It is also a natural norm to consider as it is an integrated error. That is, this norm

considers the accumulation of errors after running the model for time T > 0.

Theorem 59. Let φ : [0,T )→ R be a test function in C∞c (0,T ). Let σε(t) and σ(t) be defined as in (2) and (7), respectively.

Then295

lim
ε→0

E[|〈σε(t),φ(t)〉− 〈σ(t),φ(t)〉|2] = 0, (60)

where

〈f(t),g(t)〉=

T∫

0

f(t)g(t) dt. (61)

Proof. To prove the theorem, the expectation is conditioned on the number of events N ε(T ), as was done in the previous

section. Thus the expectation is300

E[〈σε(t)−σ(t),φ(t)〉2] (62)

=
∞∑

N=1

E







N∑

i=1

T ε2i−1+τ
r,ε
i∫

T ε2i−1

σε(t)φ(t) dt −
T∫

0

bδ(t−Ti)φ(t) dt

−
N (T )∑

i=N+1

T∫

0

bδ(t−Ti)φ(t) dt




2
∣∣∣∣∣∣∣
N ε(T ) =N


P (N ε(T ) =N)

where N (T ) is the number of dry events for the σ(t) process up to time T . Again, because of the decay of P (N ε(T ) =N) as

N →∞ given in Lemma 38, the infinite sum converges.305

To estimate the quantity in (62), one rain event is considered and the Cauchy-Schwarz bound will be used. Consider the ith

rain event,

T ε2i−1+τ
r,ε
i∫

T ε2i−1

σε(t)φ(t) dt− bφ(Ti) (63)

=

T ε2i−1+τ
r,ε
i∫

T ε2i−1

r

ε
φ(t)− r

ε
φ(T ε2i−1) +

r

ε
φ(T ε2i−1) dt+ bφ(T ε2i−1)− bφ(T ε2i−1)− bφ(Ti)

=

T ε2i−1+τ
r,ε
i∫

T ε2i−1

r

ε

(
φ(t)−φ(T ε2i−1)

)
dt+

(r
ε
τ r,εi − b

)
φ(T ε2i−1) + b(φ(T ε2i−1)−φ(Ti)).310
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The function φ(t) is smooth on [0,T ] and thus is locally Lipschitz. Let the Lipschitz constant be K > 0. Then, along with the

triangle inequality,
∣∣∣∣∣∣∣

T ε2i−1+τ
r,ε
i∫

T ε2i−1

σε(t)φ(t) dt− bφ(Ti)

∣∣∣∣∣∣∣
(64)

≤
T ε2i−1+τ

r,ε
i∫

T ε2i−1

r

ε
K
∣∣t−T ε2i−1

∣∣ dt+
∣∣∣
(r
ε
τ r,εi − b

)
φ(T ε2i−1)

∣∣∣+ |φ(T ε2i−1)−φ(Ti)| (65)

≤ r

ε
K|τ r,εi |2 +

∣∣∣
(r
ε
τ r,εi − b

)
φ(T ε2i−1)

∣∣∣+ |φ(T ε2i−1)−φ(Ti)|, (66)315

where the last inequality results from t−T ε2i−1 being an increasing function on [T ε2i−1,T ε2i−1 + τ r,εi ].

Using the inequality above, along with the Cauchy-Schwarz inequality, the quantity in (62) is bounded by

∞∑

N=1

E







N∑

i=1

T ε2i−1+τ
r,ε
i∫

T ε2i−1

σε(t)φ(t) dt−
T∫

0

bδ(t−Ti)φ(t) dt

−
N (T )∑

i=N+1

T∫

0

bδ(t−Ti)φ(t) dt




2
∣∣∣∣∣∣∣
N ε(T ) =N


P (N ε(T ) =N)

≤
∞∑

N=1

N∑

i=1

((r
ε

)2

K2E[|τ r,εi |4] +E

[∣∣∣
(r
ε
τ r,εi − b

)
φ(T ε2i−1)

∣∣∣
2
]

+E
[
|φ(T ε2i−1)−φ(Ti)|2

])
P (N ε(T ) =N)320

+
∞∑

N=1

E






N (T )∑

i=N+1

T∫

0

bδ(t−Ti)φ(t) dt




2

P (N ε(T ) =N), (67)

where all expectations are conditional on N ε(T ) =N .

To finish the theorem the following moments of τ r,εi are used

E[τ r,εi ] =
bε

r
, E[|τ r,εi |2] =

bD2ε3

r3
+
b2ε2

r2
, E[|τ r,εi |4] =

b4ε4

r4
+ 6

b3D2
1ε

5

r5
+ 15

b2D4
1ε

6

r6
+ 15

bD6
1ε

7

r7
. (68)

Thus the first term in (67) is325

(r
ε

)2

E[|τ r,εi |4] =O(ε2). (69)

The second term in (67) is

E

[∣∣∣
(r
ε
τ r,εi − b

)
φ(T ε2i−1)

∣∣∣
2
]

=E
[(r
ε
τ r,εi − b

)2
]
E
[
φ(T ε2i−1)2

]
(70)

=E
[((r

ε
τ r,εi

)2

− 2b
r

ε
τ r,εi + b2

)]
E
[
φ(T ε2i−1)2

]
(71)

=O(ε) (72)330
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where the expectation turns into a product because τ r,εi and T ε2i−1 are independent. For the third term of (67), the Lipschitz

condition is used to write

E
[
|φ(T ε2i−1)−φ(Ti)|2

]
≤K2E

[
|T ε2i−1−Ti|2

]
. (73)

Note that the stopping times can be written in terms of the moistening processes in the following way:

T ε2i−1 =
1
m

T ε2i−1∫

0

m dt, (74)335

=
1
m

2i−1∑

j=1

T εj∫

T εj−1

m dt (75)

=
1
m

i∑

j=1

T ε2j−1∫

T ε2j−2

m dt

︸ ︷︷ ︸
σε=0

+
i∑

j=1

T ε2j−1+τ
r,ε
i∫

T ε2j−1

1 dt

︸ ︷︷ ︸
σε=1

(76)

=
1
m




i∑

j=1

T ε2j−1∫

T ε2j−2

m dt+

T ε2j−1∫

T ε2j−2

D0 dWt


−

T ε2i−1∫

0

D0

m
dWt

+
i∑

j=1



T ε2j−1+τ

r,ε
i∫

T ε2j−1

1 dt+

T ε2j−1+τ
r,ε
i∫

T ε2j−1

D0

m
dWt


 (77)

=
1
m
EεT ε2i−1

+
i∑

j=1

τ r,εj +
i∑

j=1

T ε2j−1+τ
r,ε
i∫

T ε2j−1

D0

m
dWt−

T ε2i−1∫

0

D0

m
dWt, (78)340

where T ε0 ≡ 0. Similarly

Ti =
1
m

Ti∫

0

m dt (79)

=
1
m



Ti∫

0

m dt+

Ti∫

0

D0 dWt


−

Ti∫

0

D0

m
dWt (80)

=
1
m
ETi −

Ti∫

0

D0

m
dWt, (81)

where the Wiener process is the same realization as in (78). The definition of the stopping times T2i−1 and Ti imply

EεT ε2i−1
= ETi = bi.
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Thus the difference in stopping times is345

|T ε2i−1−Ti|2 =

∣∣∣∣∣∣∣
1
m

(EεT ε2i−1
−ETi)−

T ε2i−1∫

Ti

D0

m
dWt +

i∑

j=1

τ r,εj +
i∑

j=1

T ε2j−1+τ
r,ε
i∫

T ε2j−1

D0

m
dWt

∣∣∣∣∣∣∣

2

(82)

≤

∣∣∣∣∣∣∣

T ε2i−1∫

Ti

D0

m
dWt

∣∣∣∣∣∣∣

2

+
i∑

j=1

|τ r,εj |2 +
i∑

j=1

∣∣∣∣∣∣∣

T ε2j−1+τ
r,ε
i∫

T ε2j−1

D0

m
dWt

∣∣∣∣∣∣∣

2

. (83)

where the triangle inequality has been used. Taking the expected value and using the Itô isometry yields

E[|T ε2i−1−Ti|2]≤ D2
0

m2
E[T ε2i−1−Ti] +

i∑

j=1

E[|τ r,εj |2] +
D2

0

m2

i∑

j=1

E[τ r,εj ] (84)

=
D2

0

m2
E




i∑

j=1

τd,εj + τ r,εj − τdj


+

i∑

j=1

E[|τ r,εj |2] +
D2

0

m2

i∑

j=1

E[τ r,εj ] (85)350

Note that τd,εi and τdi are IID random variables with the same distribution and thus the expectations cancel. For the remaining

terms, the moments of τ r,εj in equation (68) are used to give

K2E[|T ε2i−1−Ti|2]≤K2(i
D2

0

m2
E[τ r,ε] + i

D2
0

m2
E[τ r,ε] + iE[|τ r,ε|2]) =O(ε), (86)

which completes the consideration of the third term of (67).

For the last “remainder” term in (67), the expectation is conditioned on both N (T ) and N ε(T ). That is,355

∞∑

N=1

CE






N (T )∑

i=N+1

T∫

0

bδ(t−Ti)φ(t) dt




2
∣∣∣∣∣∣∣
N ε(T ) =N


P (N ε(T ) =N) (87)

=CE







N (T )∑

i=N ε(T )+1

T∫

0

bδ(t−Ti)φ(t) dt




2

 (88)

=
∞∑

N=1

∞∑

M=1

CE







N+M∑

i=N+1

T∫

0

bδ(t−Ti)φ(t) dt




2
∣∣∣∣∣∣∣
N ε(T ) =N,N (T ) =N +M




·P (N ε(T ) =N, N (T ) =N +M) (89)

If N ε(T )≥N (T ), then there is no sum and the term is zero. If N ε(T ) 6=N (T ), then the processes Eεt and Et from Section360

3.3 must be at least b units apart. Thus by theorem 50,

P (N ε(T ) 6=N (T )) = P (|Eε(t)−E(t)|> b). (90)

Furthermore, convergence in expectation (L2) implies convergence in probability. Therefore,

lim
ε→0

P (|Eε(t)−E(t)|> b) = 0. (91)
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Putting this together with the above estimate yields365

lim
ε→0

∞∑

N=1

CE






N (T )∑

i=N+1

T∫

0

bδ(t−Ti)φ(t) dt




2
∣∣∣∣∣∣∣
N ε(T ) =N


P (N ε(T ) =N) (92)

≤ lim
ε→0

∞∑

N=1

∞∑

M=1

CE







N+M∑

i=N+1

T∫

0

bδ(t−Ti))φ(t) dt




2
∣∣∣∣∣∣∣
N ε(T ) =N,N (T ) =N +M


P (|Eε(t)−E(t)|> b) (93)

=0, (94)

by using Tonelli’s theorem to exchange the sums and limit. Thus all of the terms in (67) have been shown to converge to 0 as

ε→ 0, so that, returning to (62) and taking the limit, we have370

lim
ε→0

E[〈σε(t)−σ(t),φ(t)〉2] = 0 (95)

and the proof is completed.

4 Conclusions

In this paper, a threshold model for moisture and rain was shown to converge to a point process and related processes, and to375

converge for various modes of convergence. By demonstrating this type of convergence, the simple ideas of a point-process

model of rainfall, which at first may appear to be only an empirical model, can be linked with underlying physical processes

and evolution of moisture.

Here convergence for the moisture processes was defined and shown for the Fokker-Planck equation as well as the paths

of the processes. Furthermore, the convergence of the rain process were shown in mean square difference with respect to the380

space of generalized functions.

Using a point process to approximate rainfall allows simplification for computation and exact formulas. For example, the

autocorrelation function is known in the case of point processes as shown in Abbott et al. (2016). Furthermore, point processes

have been studied extensively in the neural science literature (Sacerdote and Giraudo, 2013) and many statistics have been

derived.385

The proofs shown here are revealing on their own, and they demonstrate further details of the convergence. The Fokker-

Planck derivation in Section 3.1 shows that the density for the moisture in the rain state tends to zero while the flux term remains

nonzero, allowing for the “teleporting” boundary condition that arises for the limiting moisture process. For the convergence

of paths of moisture shown in Theorem 50, the moisture process must first be decoupled into a moistening and precipitating

process. Then the moistening process is shown to converge (Theorem 50) while the precipitating process contains all of the390

discontinuities. Finally, the proof of convergence of the rain processes in Theorem 59 gives estimates that would be useful for

determining the error rates for using the point process approximation.
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